ELLIPSOIDS - traduction vers arabe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

ELLIPSOIDS - traduction vers arabe

QUADRIC SURFACE THAT LOOKS LIKE A DEFORMED SPHERE
Ellipsoids; Ellipsoidal; Semi-principal axis; Elipsoid; Ellipsoid (geometry); Tri-axial ellipsoid; Scalene ellipsoid; Triaxial ellipsoid; Hyperellipsoid; Ellipsoid plane section
  • Haumea}}, a Jacobi-ellipsoid [[dwarf planet]], with its two moons
  • ''S''<sub>1</sub> ''S''<sub>2</sub>}}}}, length of the string (red)
  • Plane section of an ellipsoid (see example)
  • Plane section of the unit sphere (see example)
  • ellipsoid as an affine image of the unit sphere
  • Plane section of an ellipsoid
  • '''Top:''' 3-axial Ellipsoid with its focal hyperbola.<br>
'''Bottom:''' parallel and central projection of the ellipsoid such that it looks like a sphere, i.e. its apparent shape is a circle
  • ''c'' {{=}} 3}}, ''bottom right''
}}
  • Determination of the semi axis of the ellipsoid
  • Pins-and-string construction of an ellipsoid, blue: focal conics

ELLIPSOIDS         

ألاسم

مُجَسَّمٌ ناقِص

ELLIPSOID         

ألاسم

مُجَسَّمٌ ناقِص

ELLIPSOIDAL         

ألاسم

مُجَسَّمٌ ناقِص

Définition

Ellipsoid
·adj ·Alt. of Ellipsoidal.
II. Ellipsoid ·noun A solid, all plane sections of which are ellipses or circles. ·see Conoid, ·noun, 2 (a).

Wikipédia

Ellipsoid

An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

An ellipsoid is a quadric surface;  that is, a surface that may be defined as the zero set of a polynomial of degree two in three variables. Among quadric surfaces, an ellipsoid is characterized by either of the two following properties. Every planar cross section is either an ellipse, or is empty, or is reduced to a single point (this explains the name, meaning "ellipse-like"). It is bounded, which means that it may be enclosed in a sufficiently large sphere.

An ellipsoid has three pairwise perpendicular axes of symmetry which intersect at a center of symmetry, called the center of the ellipsoid. The line segments that are delimited on the axes of symmetry by the ellipsoid are called the principal axes, or simply axes of the ellipsoid. If the three axes have different lengths, the figure is a triaxial ellipsoid (rarely scalene ellipsoid), and the axes are uniquely defined.

If two of the axes have the same length, then the ellipsoid is an ellipsoid of revolution, also called a spheroid. In this case, the ellipsoid is invariant under a rotation around the third axis, and there are thus infinitely many ways of choosing the two perpendicular axes of the same length. If the third axis is shorter, the ellipsoid is an oblate spheroid; if it is longer, it is a prolate spheroid. If the three axes have the same length, the ellipsoid is a sphere.